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We obtain the exact bound states of the generalized of Hulthén potential with negative
energy levels using an analytic approach. In order to obtain bound states, we use the
associated Jacobi differential equation. Using the supersymmetry approach to quantum
mechanics, we show that these bound states, via four pairs of first order differential
operators, represent four types of ladder equations. Two types of these supersymmet-
ric structures suggest derivation of algebric solutions for the bound states using two
different approaches.

KEY WORDS: special functions; supersymmetry; bound states; ladder operators;
Hulthén potential.

PACS : 21.60.Cs; 21.60.Fw; 21.60.-n; 03.65.Fd; 03.65.Ge; 03.65.-w

Supersymmetry in quantum mechanics is based on the concept of factoriza-
tion in the context of shape invariant quantum mechanical problems. If a quan-
tum mechanical problem possesses supersymmetry, we can then factorize the
Hamiltonian of the system in terms of a product of first order differential oper-
ators leading to shape invariant equations. In this approach, the Hamiltonian is
decomposed once in terms of the product of raising and lowering operators and
once again as the product of lowering and raising operators, in such a way that
the corresponding quantum states of successive levels, are their eigen-states .
These Hamiltonians are called supersymmetric partner of each other. In fact,
the three separate topics, the factorization method, supersymmetry in quantum
mechanics and shape invariance, nowadays have converged to each other. Ini-
tially the factorization method was suggested by Darboux (1996) and Schrödinger
(1940, 1941a, b) applied it to quantum mechanics. Infeld and Hull (1951) in their
review article have studied a large variety of second order differential equations
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with boundary conditions and have classified them using six different types of
factorizations. The idea of supersymmetry in the context of quantum mechan-
ics were first studied by Nicolai and Witten and later by Cooper et al. (Beckers
et al., 1997; Cooper and Freedman, 1983; Nicolai, 1976; Witten, 1981, 1982).
Later, Gendenshtein put forward the concept of shape invariance in the con-
text of the supersymmetric quantum mechanics (Gendenshtein, 1983). Many fea-
tures of shape invariant quantum mechanical problems have been studied using
the factorization method in the context of supersymmetric quantum mechanics
(Adrianov et al., 1984; Aoyama et al., 2001; Balantekin, 1998; Balantekin et al.,
1999; Barcelos-Neto and Das, 1986; Carinena and Ramos, 2000a, 2000b; Chuan,
1991; Cooper et al., 1995, 2001; Das and Huang, 1990; Dunne and Feinberg,
1998; Dutt et al., 1988; Fakhri, 2003; Fakhri and Seyed Yaghoobi, 2001; Fukui
and Aizawa, 1993; Gendenshtein, 1983; Haymaker and Rau, 1986; Qian et al.,
2002; Salamonson and van Holten, 1982; Sukumar, 1985). Nowadays, the concept
of shape invariance have been extended to the ordinary differential equations and
on this basis a second order differential operator is decomposed to a product ladder
operators (Jafarizadeh and Fakhri, 1997, 1998). The Hulthén potential (1925) is
one of the important short - range potential in physics. This potential is a special
case of the Eckart potential which has been widely used in several branches of
physics, for example in nuclear (Hall, 1935) and atomic physics (Myhrman, 1983).
From Ref (Lopez-Bonilla et al., 2002) the generalized Hulthén potential is given
by:

V (r) = V0

1 − eAr
+ 2A2eAr

(1 − eAr )2

where A and V0 are positive constants such that V0 > A2 and A is called screening
parameter.

In this paper, we will exactly solve the time-independent Schrödinger equa-
tion for the generalized spherical Hulthén potential with the zero angular momen-
tum,

−h̄2

2M

(
d2ψ(r)

dr2
+ 2

r

dψ(r)

dr

)
+

(
V0

1 − eAr
+ 2A2eAr

(1 − eAr )2

)
ψ(r) = Eψ(r), (1)

and apply supersymmetry factorization approaches to it. We compute the param-
eters V0, E and also the bound states ψ(r) from the comparison of the differential
equation (1) with the associated Jacobi differential equation in an appropriate man-
ner. To begin with, we recall that for the real parameters α, β > −1, the associated
Jacobi differential equation corresponding to P

(α,β)
n,m (x) in the interval x ∈ (−1, 1)
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is given as follows (Jafarizadeh and Fakhri, 1997, 1998):

(1 − x2)P ′′(α,β)
n,m (x) − [α − β + (α + β + 2)x] P ′(α,β)

n,m (x)

+
[
n(α + β + n + 1) − m(α + β + m + (α − β)x)

1 − x2

]
P (α,β)

n,m (x) = 0 . (2)

Here, the indices n and m are non-negative integers with ∞ > n ≥ m ≥ 0, and for
m = 0, the Eq. (2) reduces to the differential equation leading to the Jacobi poly-
nomials. The associated Jacobi functions P

(α,β)
n,m (x) are solutions to the differential

Eq. (2) and have the following Rodrigues representation

P (α,β)
n,m (x) = an,m(α, β)

(1 − x)α+ m
2 (1 + x)β+ m

2

(
d

dx

)n−m

((1 − x)α+n(1 + x)β+n) . (3)

As mentioned in (Carinena, 2000a, 200b), we can write the associated Jacobi
differential Eq. (2) as the following shape invariant equations with respect to the
parameters n and m:

A+
n,m(x)A−

n,m(x)P (α,β)
n,m (x) = En,mP (α,β)

n,m (x) (4a)

A−
n,m(x)A+

n,m(x)P (α,β)
n−1,m(x) = En,mP

(α,β)
n−1,m(x), (4b)

and

A+
m(x)A−

m(x)P (α,β)
n,m (x) = En,mP (α,β)

n,m (x) (5a)

A−
m(x)A+

m(x)P (α,β)
n,m−1(x) = En,mP

(α,β)
n,m−1(x), (5b)

where

A+
n,m(x) = (1 − x2)

d

dx
− (α + β + n)x − (α − β)(α + β + n + m)

α + β + 2n

A−
n,m(x) = −(1 − x2)

d

dx
− nx + (α − β)(n − m)

α + β + 2n
, (6)

A+
m(x) =

√
1 − x2

d

dx
+ (m − 1)x√

1 − x2

A−
m(x) = −

√
1 − x2

d

dx
+ (α − β) + (α + β + m)x√

1 − x2
, (7)

En,m = 4(n − m)(α + n)(β + n)(α + β + n + m)

(α + β + 2n)2
, (8)

and

En,m = (n − m + 1)(α + β + n + m). (9)
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Note that the shape invariant Eq. (4) contain the indices (n,m) and also
(n − 1,m) and the shape invariant Eq. (5) contain the indices (n,m) and (n,m − 1).
Using Eqs. (6) to (9) it is not difficult to see that each of the Eqs. (4a), (4b), (5a) and
(5b) is a copy of the differential Eq. (2). The facotrized Eqs. (4a) and (4b) together
describe shape invariance with respect to n, and also (5a) and (5b) together describe
shape invariance with respect to m. One can easily write the shape invariant Eqs. (4)
and (5) as the laddering relations with respect to the indices n and m, respectively:

A+
n,m(x)P (α,β)

n−1,m(x) = √
En,mP (α,β)

n,m (x) (10a)

A−
n,m(x)P (α,β)

n,m (x) = √
En,mP

(α,β)
n−1,m(x) (10b)

A+
m(x)P (α,β)

n,m−1(x) = √
En,mP (α,β)

n,m (x) (11a)

A−
m(x)P (α,β)

n,m (x) = √
En,mP

(α,β)
n,m−1(x). (11b)

It is clear that in contrast to Eqs. (4) and (5), the realization of Eqs. (10) and
(11) imposes a constraint on the normalization coefficients an,m(α, β). A simple
computation shows that with the choice of the following normalization coefficient

an,m(α, β)= (−1)m

2n

√
�(α + β + n + m + 1)

�(n − m + 1)�(α + n + 1)�(β + n + 1)
C(α, β) n ≥ m,

(12)
with the constraint

C(α + m,β + m) =
(−1

2

)m

C(α, β), (13)

Eqs. (10) and (11) can be simultaneously satisfied. The arbitrary constant C(α, β)
is independent of n and m and satisfies only the constraint (13). Now, with the
application of Eq. (12) and using integration by part, for the given associated Jacobi
function P

(α,β)
n,m (x) in Eq. (3), we obtain the following orthogonality condition∫ 1

−1
P (α,β)

n,m (x)P (α,β)
n′,m (x)(1 − x)α(1 + x)βdx = δnn′h2

n(α, β). (14)

The above equation shows that h2
n(α, β) is the squared norm of the associated

Jacobi function P
(α,β)
n,m (x) which is also independent of m. This in turn, leads to

following equation:

h2
n(α, β) = 2α+β+1

α + β + 2n + 1
C2(α, β). (15)

If we know that C(α, β) is symmetric with respect to the exchange of pa-
rameters α and β, namely C(α, β) = C(β, α) then according to Eq. (12), also
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normalization coefficients an,m(α, β) will be symmetric with under the exchange
of α and β, namely an,m(α, β) = an,m(β, α). Hence, from Eq. (3) one can obtain
P

(α,β)
n,m (−x) = (−1)n−mP

(β,α)
n,m (x). So from (14) we have

∫ 1

0
P (α,β)

n,m (x)P (α,β)
n′,m (x)(1 − x)α(1 + x)βdx

+ (−1)n+n′
∫ 1

0
P (β,α)

n,m (x)P (β,α)
n′,m (x)(1 − x)β(1 + x)αdx = δnn′h2

n(α, β). (16)

The change of variable

x = coth
Ar

2
(17)

with the real parameter A > 0 transforms the interval x ∈ (0, 1) in Eq. (16) to the
interval r ∈ (0,∞). By change of function

ψ(r(x)) = u(x)P (α,β)
n,m (x) with u(x) = (1 − x2)

α+β

4

coth−1 x
e

1
2 (β−α) tanh−1 x, (18)

together with the change of variable (17) in Eq. (1), it is easy to obtain the
differential Eq. (2) for P

(α,β)
n,m (x). Consequently, comparing Eqs. (1) and (2) and

using the change of variable (17) together with the change of function (18), we
obtain

V0(α, β; m) = h̄2

8MA2
(β − α)(α + β + 2m) (19)

and

ψ(r(x)) = (1 − x2)
α+β

4

coth−1 x
e

1
2 (β−α) tanh−1 xP (α,β)

n,m (x) (20)

and also we can obtain the Schrödinger equation corresponding to the generalized
Hulthén potential with the zero angular momentum:
[−h̄2

2M

(
d2

dr2
+ 2

r

d

r

)
+

(
V0(α, β; m)

1 − eAr
+ 2A2(α, β; m)eAr

(1 − eAr )2

)] ∣∣α,β
n,m

〉 = Em(α)
∣∣α,β
n,m

〉
.

(21)
The bound states and it’s energy spectrum are given as follows

∣∣α,β
n,m

〉 = 2

Ahn(α, β)

e
1
2 (β−α) tanh−1(coth Ar

2 )P
(α,β)
n,m (coth Ar

2 )

r sinh
α+β

2 (Ar
2 )

n ≥ m, (22)

Em(α) = −h̄2

8Ma2
(α + m)2. (23)
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It is also necessary to mention that, in special the case α = β, the first term of
the potential is cancelled, V0(α, α; m) = 0, in this case the second term of potential
becomes independent of the parameter m. In this case, m plays role of a quantum
number and the quantum of energy proportional to minus (α + m)2. And also it is
clear that for a given m, all bound states |α,β

n,m〉 with n ≥ m, have the same binding
energy Em(α). For usual Spherical Hulthén potential, bound states are expressed
in terms of the hypergeometric functions. Here we indeed deal with such a case.
The reader can check for the relation-ship between the associated hypergeometric
functions and associated Jacobi functions in Fernández et al. (1996). Using the
definition of the inner product of the bound states |α,β

n,m〉 with respect to the weight
function

W (r) = r2A3
(
1 − coth Ar

2

)α(
1 + coth Ar

2

)β
sinhα+β−2 Ar

2

8e(β−α) tanh−1(coth Ar
2 )

, (24)

in the interval r ∈ (0,∞) by

〈
α,β
n,m|α,β

n′,m

〉
= A

2hn(α, β)hn′ (α, β)

×
∫ ∞

r=0
P (α,β)

n,m

(
coth

Ar

2

)
P

(α,β)
n′,m

(
coth

Ar

2

)(
1 − coth

Ar

2

)α

×
(

1 + coth
Ar

2

)β
dr

sinh2 Ar
2

, (25)

in Eq. (16) we obtain
〈
α,β
n,m|α,β

n′,m

〉
+ (−1)n+n′ 〈β,α

n,m|β,α

n′,m

〉
= δnn′ . (26)

The existence of each pair of the raising and lowering operators provides
us with two fermionic operators and one bosonic operator, which together satisfy
N = 2 supersymmetry algebra . Therefore, the representation superspace of the
supersymmetry algebra is written as a direct sum of the fermionic and bosonic
sectors which are constructed by the bound states of the generalaized Hulthén
potential. So, in order to obtain different representations of the N = 2 supersym-
metry algebra , it is enough to obtain the different representations of the ladder
relations for bound states of the generalized Hulthén potential.

Now, we can obtain four pairs of ladder relations for the bound states of the
generalized Hulthén potential, |α,β

n,m〉. First of all we show that these bound states
represent the raising and lowering relations with respect to the index n as a first
approach to supersymmetry. Defining the operators

A±
n,m(r) := [u(x)A±

n,m(x)u−1(x)]x=coth( Ar
2 ), (27)
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and using the explicit form of u(x), we can compute their differential forms as
follows

A±
n,m(r) = ± 2

A

d

dr
− 1

2
(α + β + 2n) coth

Ar

2
± 2

Ar
− (α − β)(α + β + 2m)

2(α + β + 2n)
.

(28)
Consequently, by using Eqs. (10) and (22) we conclude that the bound states

|α,β
n,m〉 represent the raising and lowering relations of the index n as follows

A+
n,m(r)

∣∣∣α,β

n−1,m

〉
= hn(α, β)

hn−1(α, β)

√
En,m

∣∣α,β
n,m

〉
(29a)

A−
n,m(r)

∣∣α,β
n,m

〉 = hn−1(α, β)

hn(α, β)

√
En,m

∣∣∣α,β

n−1,m

〉
. (29b)

Combination of Eqs. (29a) and (29b) with each other, leads to shape invariant
equations with respect to the index n as (n,m) and (n − 1,m) which is represented
by the bound states of the generalized Hulthén potential.

Now we are going to investigate a second approach to supersymmetry, namely
representation of raising and lowering relations with respect to the index m using
the bound states of the generalized Hulthén potential. The explicit form of the first
order differential operators are defined as follows

A±
m(r) := [u(x)A±

m(x)u−1(x)]x=coth Ar
2
. (30)

Using Eq. (7) and also given u(x) as in (18), are obtained as follows

A±
m(r) = ± 2

A
sinh

Ar

2

d

dr
+ 1

2
(α + β + 2m − 1 ∓ 1) cosh

Ar

2

+ 1

2
(α − β) sinh

Ar

2
± 2

Ar
sinh

Ar

2
. (31)

From Eqs. (11) and (22) we can easily obtain that the operators A+
m(r) and

A−
m(r) increase and decrease the index m respectively as the following

A+
m(r)

∣∣∣α,β

n,m−1

〉
= √

En,m

∣∣α,β
n,m

〉
(32a)

A−
m(r)

∣∣α,β
n,m

〉 = √
En,m

∣∣∣α,β

n,m−1

〉
. (32b)

Again, combination of Eqs. (32a) and (32b) with each other, gives us shape
invariant equations with respect to the index m as (n,m) and (n,m − 1) . These
are represented by the bound states of the generalized Hulthén potential.

Now we focus on a third approach to supersymmetry, this follows from
different type of the laddering relations. Our purpose of laddering relations here
is to introduce first order differential operators which shift simultaneously the
indices n and m of the bound states by one unit, so that one of them increases
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while other decreases. The new first order differential operators are defined as
below

A+,−
n,m (r) := A−

m(r)A+
n,m(r) − A+

n,m−1(r)A−
m(r)

A−,+
n,m (r) := A−

n,m(r)A+
m(r) − A+

m(r)A−
n,m−1(r). (33)

In turns out that A±,±
n,m (r) have the following explicit form

A±,∓
n,m (r) =

[
α − β

α + β + 2n
+ coth

Ar

2

] [
± 2

A
sinh

Ar

2

d

dr
− 1

2
(α − β) sinh

Ar

2

−1

2
(α + β + 2m − 1 ± 1) cosh

Ar

2
± 2

Ar
sinh

Ar

2

]

+
(

n − m + 1

2
∓ 1

2

)
1

sinh Ar
2

. (34)

By using Eqs. (29) and (32) we obtain the following new laddering relations

A+,−
n,m (r)

∣∣∣α,β

n−1,m

〉
= 2hn(α, β)

hn−1(α, β)

√
(n − m + 1)(n − m)(α + n)(β + n)

(α + β + 2n)2

∣∣∣α,β

n,m−1

〉

(35a)

A−,+
n,m (r)

∣∣∣α,β

n,m−1

〉
= 2hn−1(α, β)

hn(α, β)

√
(n − m + 1)(n − m)(α + n)(β + n)

(α + β + 2n)2

∣∣∣α,β

n−1,m

〉
.

(35b)

The laddering relations (35) show that the operator A+,−
n,m (r)(A−,+

n,m (r)) in-
creases and decreases (decreases and increases) simultaneously the indices n and
m of bound states of the generalized Hulthén potential. Notice that, the combina-
tion of two laddering Eqs. (35a) and (35b) with each other, gives us shape invariant
equations with respect to both indices n and m as (n,m − 1) and (n − 1,m), which
are realized by the bound states of the generalized Hulthén potential.

A fourth approaches to supersymmetry is obtained from the realization of
the laddering relations simultaneously for raising and lowering operators of both
indices n and m of the generalized Hulthén potential bound states. Defining the
new first order differential operators as

A+,+
n,m (r) := A+

m(r)A+
n,m−1(r) − A+

n,m(r)A+
m(r)

A−,−
n,m (r) := A−

n,m−1(r)A−
m(r) − A−

m(r)A−
n,m(r).

(36)
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So, using Eqs. (28) and (31) one may obtain the explicit form of these operators
as follows

A±,±
n,m (r) =

[
α − β

α + β + 2n
− coth

Ar

2

] [
± 2

A
sinh

Ar

2

d

dr
+ 1

2
(α − β) sinh

Ar

2

+1

2
(α + β + 2m − 1 ∓ 1) cosh

Ar

2
± 2

Ar
sinh

Ar

2

]

−
(

α + β + n + m − 1

2
∓ 1

2

)
1

sinh Ar
2

. (37)

For these operators by applying Eq. (36), and from the scalar relations (29)
and (32), immediately we obtain the following new laddering relations

A+,+
n,m (r)

∣∣∣α,β

n−1,m−1

〉

= 2hn(α, β)

hn−1(α, β)

√
(α + β + n + m − 1)(α + β + n + m)(α + n)(β + n)

(α + β + 2n)2

× ∣∣α,β
n,m

〉
(38a)

A−,−
n,m (r)

∣∣α,β
n,m

〉

= 2hn−1(α, β)

hn(α, β)

√
(α + β + n + m − 1)(α + β + n + m)(α + n)(β + n)

(α + β + 2n)2

×
∣∣∣α,β

n−1,m−1

〉
. (38b)

Therefore, the operators A+,+
n,m (r) and A−,−

n,m (r) increase and decrease simulta-
neously both the indices n and m of bound states, respectively. Combination of the
laddering Eqs. (38a) and (38b) with each other, rise to shape invariant equations
with respect to the indices n and m as (n,m) and (n − 1,m − 1).

In order to obtain two types of different algebraic solutions for the bound
states of the generalized Hulthén potential, we now use the supersymmetry ap-
proaches of the first and second types, i.e. the laddering Eqs. (29) and (32). First,
we obtain the suggested algebraic solution by the laddering equations with respect
to the index n. Pay attention for a given m, and using Em,m = 0, Eq. (29b) gives

A−
m,m(r)

∣∣α,β
m,m

〉 = 0 , (39)

which is a first order differential equation and its solution is easily obtained as
follows

∣∣α,β
m,m

〉 = 2 am,m(α, β)

Ahm(α, β)

e
1
2 (β−α) tanh−1(coth Ar

2 )

r sinh
α+β+2m

2 Ar
2

. (40)
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Also, the result (40) can be confirmed from the analytic solution (22). With
successive application of laddering Eq. (29a), all other bound states |α,β

n,m〉 with
n > m can be obtained,

∣∣α,β
n,m

〉 = hm(α, β)

hn(α, β)

A+
n,m(r)A+

n−1,m(r) · · ·A+
m+1,m(r)

∣∣∣α,β
m,m

〉
√

En,mEn−1,m · · · Em+1,m

n ≥ m + 1. (41)

It is clear that all bound states |α,β
n,m〉 with n ≥ m which is computed by

algebraic methods (Eqs. (40) and (41)) have the same energy Em(α) and shifting
the index n by the operators A±

n,m(r) do not change their energy. Now we obtain
the algebraic solution which is suggested by laddering equations with respect to
the index m. For a given n, with the consideration of En,n+1 = 0 from Eq. (32a)
we have

A+
n+1(r)

∣∣α,β
n,n

〉 = 0, (42)

which is a first order differential equation, and it’s solution may easily be obtained
as (40), with the m replaced n. The energy of the bound state |α,β

n,n 〉 is En(α). With
successive application of the laddering Eq. (32b) one can obtain

∣∣α,β
n,m

〉 =
A−

m+1(r)A−
m+2(r) · · ·A−

n (r)
∣∣∣α,β
n,n

〉
√
En,m+1En,m+2 · · · En,n

m ≤ n − 1. (43)

Contrary to the previous case, all obtained bound states of the form of the
algebraic solution (43) do not contain the same energy and the corresponding
energies are given by Em(α) which differ by the values of m. So the effect of
the operators A±

m(r) on the bound states of the generalized Hulthén potential is
to change the binding energy. The absolute value of the binding energy increases
by A+

m(r) and decreases by A−
m(r). One can verify that the operators A±;∓

n,m (r) and
A±;±

n,m (r) shift the binding energy.
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